# 建築・土木用連続繊維補強コンクリートの環境調和型部材設計法の可視化

Visualization of Environment-conscious Component Design of Continuous Fiber Reinforced
Concrete for Building and Civil Engineering Use
福島敏夫(福島建築環境材料研究所 2)

Toshio Fukushima, Fukushima Institute 2 for Building Environment and Materials

FAX: 029-842-3515, E-mail: Fukushima-t-1564@ae.auonee-net.jp; fukutosi@hotmail.com

As to continuous fiber reinforced concrete as lightweight, high tensile strength, and high corrosion-resistant advanced composite materials in building and civil engineering fields, numerical research is done on the rational component design in order to consist with environment-conscious harmony. Considering the ratio of elastic coefficient between main reinforcing steel and continuous fiber reinforced plastics reinforcement, sectional calculation was done, based upon balanced ratio of reinforcement by allowed stress.. Visualization was done for evaluation of the global environmental load such as global warming. This is considered to be very useful hereafter to be environment-conscious design in materials and structural engineering.

### 1. はじめに

連続繊維補強コンクリート (Continuous fiber reinforced concrete: FRPRC) は、建築・土木用先端複合材料のひと つであり、塩化物イオン等による内部鉄筋の腐食による 劣化が起こりやすい鉄筋コンクリート (RC) に代わる軽 量・高強度・高耐久性構造部材としての利用が図られて きた $^{1-3)}$ 。しかし、連続繊維強化プラスチック (FRP)補 強材は、高引張強度を持つが、完全弾性体に近く、通常 の鉄筋(s)のような降伏特性による地震外力のエネルギ 一吸収性能は、期待できない。このため、外緊張ケーブ ル等としての応用ができた土木分野と違い、建築分野で は、鉄筋コンクリートの耐震補強・劣化補強のための連 続繊維シートとしての応用例もあるが、コンクリート補 強材としての合理的な構造設計が難しいために、構造部 材としての浸透度が小さい。防・耐火性など、他の性能 の面からの制限もあった。そのため、極寒地帯である南 極の昭和基地の地中梁や、補強材が非磁性である特徴を 活かしたい伊豆大島の地磁気観測所の建築基礎のような 特殊な環境・用途に限られていた。しかし、新素材・新 材料の有効利用による持続可能な新しいインフラストラ クチャーや建造物の創成という意味で、改めて、構造部 材として適用する根強い期待も多い。今後、合理的な性 能照査型設計法が確立するまで待つ必要もある。しか し、これらの FRPRC が、"人と環境にやさしい"環境 調和型部材(エコ・コンポーナント)たるためには、要 求される力学的特性を満足させるための合理的な部材設 計とともに、的確なライフサイクル評価(LCA)が必要 である。これまで、資源循環面からは、かなりの研究成 果が蓄積され、既に、国際会議でのいくつか発表も行わ れた4)。しかし、環境負荷面からの評価5)-7)は、これまで 必ずしも十分には、行われてこなかった。このため、本 報では、特に、要求される力学的特性を満足させるため の総材料投入量とエネルギー消費量および有害物質発生 量に着目して、環境負荷評価に基づく地球環境への影響

に配慮した環境調和型部材設計についての諸検討ととも に、地球環境影響度の評価の手順と結果の可視化を行っ た。実りある研究成果が得られたので、報告を行う。

#### 2. 研究方法

RC 部材の標準的な梁の部材設計は、許容応力度設計法に基づいて、引張側鉄筋と圧縮側コンクリートが、同時に破損に至るという条件で、図-1のような複鉄筋矩形梁断面でモデル化される。FRPRCでも、基本的には、この部材設計が踏襲できるが、式(1)のように、FRPとsとの弾性係数比( $E_{\rm FRP}/E_{\rm s}$ )を考え、有効引張主鉄筋比( $p_{\rm s}$ )を補正することになる。図-1では、引張主鉄筋断面積( $A_{\rm s}$ )は、3096mm2、引張主鉄筋比は、0.044、コンクリート断面積は、380,904cm²である。また、コンクリートの許容応力度( $F_{\rm c}$ )は、24N/mm²、鉄筋の短期許容応力度( $F_{\rm t}$ )は、降伏強度 345N/mm² とする。また、地球環境負荷の改善策として、混合セメントの使用を考える。

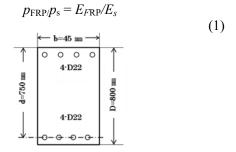



Fig.1 Modeled Section of Normal Beam of Reinforced Concrete

## 3. 研究結果と議論

### 3. 1 コンクリート補強材の基本的性質

表-1は、FRP および鉄筋の基本的特性を示す。

Table 1 Fundamental properties of Reinforcements

| Reiforcement                                                                                                            | Density  | Tensile Strength         | Tensile Elasticity |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|--------------------|--|--|--|
|                                                                                                                         | $g/cm^3$ | N/mm <sup>2</sup>        | kN/mm <sup>2</sup> |  |  |  |
| CFRP1)                                                                                                                  | 1.5      | 1372                     | 117.6              |  |  |  |
| GFRP <sup>2)</sup>                                                                                                      | 2        | 980                      | 42.1               |  |  |  |
| Steel (electric<br>furnace steel)<br>(SD345)                                                                            | 7.8      | 490 (345 <sup>3)</sup> ) | 200                |  |  |  |
| 1)CFRP:PAN—type carbon continous fiber reinforced epoxy resin<br>2)GFRP:E-glass continuous fiber reunforced epoxy resin |          |                          |                    |  |  |  |
| 3)Yield strength                                                                                                        |          |                          |                    |  |  |  |

表-2は、FRPRC および RC の単位エネルギー消費(UEC) および有害ガス発生量をまとめたものである $^{5)-7}$ 。図 $-1\sim3$ は、表-2の環境負荷データを基に、地球環境委影響度の評価を可視化した結果である。温暖化は、 $CO_2$ 排出量から、酸性雨は、 $SO_X+1.7$   $NO_X$  から、算出したものである。

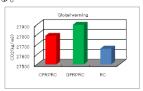



Fig.3 Global environmental load (No.2: Global Warming)

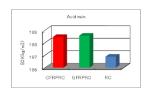



Fig.4 Global environmental load (No.3: Acid Rain

## 4、まとめと結論

連続繊維補強コンクリート (FRPRC) および鉄筋コンクリート (RC) について、引張張強度および密度と LCA 基礎データに基づいて、総材料投入量と単位エネルギー消費量および有害ガス ( $CO_2$ ,  $SO_x$ ,  $NO_x$ ) 発生量を算出し、それらの環境負荷データに基づいて、地球環境負影響度の比較を行い、次のことが明らかとなった。1) CFRP および GFRP の引張強度あたりの総材料投入量は、Sよりはかなり小さいが、単位エネルギー消費量と有害ガス排出量は、逆に、S よりはかなり大きい。2) コンクリート複合部材の総材料投入量は、ほとんどコンクリートで決まるが、地球環境負荷は、補強材で決まるという言うことができる。

#### 5. 今後の展望と課題

今回は、部材生産時における環境負荷評価を行ったものである。供用時や廃棄時までを含めたライフサイクルでの環境負荷評価にまでなっていない。今後、それらのことも

Table2 Environmental Loads of FRPRC and RC

| Type of reinforced concrete | Unit energy<br>consumption(<br>UEC | Amount of generation of hazard gas |                         |                         |
|-----------------------------|------------------------------------|------------------------------------|-------------------------|-------------------------|
|                             | (MJ/kg)                            | CO <sub>2</sub> (kg/kg)            | SO <sub>x</sub> (kg/kg) | NO <sub>x</sub> (kg/kg) |
| CFRPRC                      | 769.24                             | 27786.9                            | 47.57                   | 201.27                  |
| GFRPRC                      | 470.06                             | 27898.8                            | 47.77                   | 201.04                  |
| RC                          | 482.72                             | 27658.5                            | 47.36                   | 199.31                  |

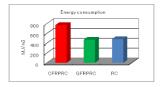



Fig.2 Global environmental load (No.1: Energy Consumption

配慮した合理的な環境調和型部材設計にする必要もある。

#### 【謝辞】

本研究を行うに当たっては、日本建築学会、コンクリート 工学会、土木学会などの公開データ、産業環境管理協会、 セメント協会、炭素繊維協会、強化プラスチック協会、鉄 鋼連盟などからのエネルギー原単位および有害物質排出量 のデータの提供を頂いた。ここに記して深謝したい。

### 【参考文献】

- 1) 福島敏夫:日本複合材料学会誌 第24 巻第6号(1998) pp. 212-221
- 2) 西崎 至:日本複合材料学会誌、第 26 巻第 2 号(2000) pp. 37-42
- 3) 建設省大臣官房技術調査室監修、連続繊維補強コンク リート―諸性質と設計法ー、技報堂出版、256p (1995)
- 4) T. Fukushima: Resources Circulation-oriented Ecomaterials Design of Continuous Fiber Reinforce Concrete, Materials Science Formus. Vols. 426-432 (2003) (Proceedings of the Symposium Ecomaterials of International. Conference on Processing& Production of Advanced Materials (THERMEC'2003), held on July7-11, 2003, in Madrid, Spain), Trans Tech Publications, Switzerland (2003) pp.3323-332
- 5) 福島敏夫、濱崎 仁、高巣幸二:各種のコンクリート の地球環境影響度評価、日本建築学会大会学術講演梗概 集、材料・施工、pp. 1181-1182 (2009)
- 6) (社) 土木学会: コンクリートの環境負荷(その2)、コンクリート技術シリーズ62 (2004)
- 7) 福島敏夫: 先端複合材料・部材・構法の環境調和性・ 持続可能性評価と環境調和型設計-持続可能な環境調 和型・資源循環型建築・都市・社会を支えるエコマテ リアル及 びエコ デ ザ イ ン の 視 点 か ら の ア プ ロ ー チ ー 、 FOOTSTEP (北九州市立大学国際環 境工学部研究事例集2008)、(2009) pp. 21-24